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Abstract 

The troposphere above the West Antarctic Ice Sheet (WAIS) was sampled for 

hydroperoxides at 2 1 locations during 2-month-long summer traverses from 2000 to 2002, as part 

of US ITASE (International Transantarctic Scientific Expedition). First time quantitative 

measurements using an HPLC method showed that methylhydroperoxide (MHP) is the only 

important organic hydroperoxide occurring in the Antarctic troposphere, and that it is found at 

levels ten times those previously predicted by photochemical models. During three field seasons, 

means and standard deviations for hydrogen peroxide (H202) were 321k158 pptv, 650*176 pptv 

and 33&147 pptv. While MHP was detected, but not quantified in December 2000, levels in 

summer 2001 and 2002 were 317+128 pptv and 304*172.2 pptv. Results from firn air 

experiments and diurnal variability of the two species showed that atmospheric H202 is 

significantly impacted by a physical snow pack source between 76 and 90 O S ,  whereas MHP is 

not. We show strong evidence of a positive feedback between stratospheric ozone and H202 at the 

surface. Between November-27 and December-12 in 2001, when ozone column densities dropped 

below 220 DU (means in 2000 and 2001 were 318 DU and 334 DU, respectively), H202 was 1.7 

times that observed in the same period in 2000 and 2002, while MHP was only 80% of the levels 

encountered in 2002. Photochemical box model runs suggest that NO and OH levels on WAIS are 

closer to coastal values, while Antarctic Plateau levels are higher, confirming that region to be a 

highly oxidizing environment. The modeled sensitivity of H202 and particularly MHP to NO 

offers the potential to use atmospheric hydroperoxides to constrain the NO background and thus 

estimate the past oxidation capacity of the remote atmosphere. 

Index Terms: 0365 Atmospheric Composition and Structure: Troposphere: composition and 

chemistry; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 1610 

Global Change: Atmosphere (03 15,0325); 0736 Cryosphere: Snow (1827, 1863); 0724 

Cryosphere: Ice Cores (4932) 

Keywords: hydrogen peroxide, methylhydroperoxide, Antarctica, air-snow exchange, 

stratospheric ozone, atmospheric oxidation capacity 
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1. Introduction 

Atmospheric photooxidants are responsible for the removal of carbon monoxide (CO), 

methane (CK), nitrogen oxides (NO, NO2), dimethyl sulfide (DMS), sulfur dioxide (SO2) and 

halogenated compounds and thus control particle formation, the buildup of greenhouse gases and 

ultimately climate change. Hydroperoxides (ROOH) contribute to the oxidizing power of the 

troposphere [Lee, et al., 20001, defined as the total burden of ozone (03), HO, radicals and 

hydrogen peroxide (H202), and also constitute an important radical reservoir. There is increasing 

evidence that polar snow packs influence the overlying atmosphere by uptake and release of NO,, 

organic acids, formaldehyde (HCHO) [Doming and Shepson, 20021 and H202 [Hutterli, et al., 

2004; Hutterli, et al., 20011. Elevated HO, levels at South Pole [Mauldin, et al., 2001; Mauldin, 

et al., 20041 and changes in ground level O3 in relation to stratospheric O3 depletion in spring 

[Jones and Wolfi 20031 show that snow-atmosphere interactions can alter the budget of 

atmospheric oxidants in the boundary layer. In addition, ice core records of H202 [Anklin and 

Bales, 1997; Sigg and Neftel, 19911 help constrain reconstructions of past atmospheric oxidation 

capacity, provided processes controlling deposition and preservation are understood [McConnell, 

et al., 1997al. 

In the presence of sunlight, water vapor and 03, the short-lived OH radical is produced 

and converted into peroxyradicals through the oxidation of CO, C& or other non-methane 

hydrocarbons: 

CO + OH + 0 2  -+ C02 +HO2 

C& +OH + 0 2  -+ H20 + CH302 

(R1) 

(R2) 

(R3) 

014) 

The main photolytic source of ROOH is the combination of peroxyradicals: 

HO2 + HO2 -+ H202 + 0 2  

RO2 + HO2 -+ ROOH + 0 2  

However, competing reactions with NO, which represent also the core of photochemical O3 

production in the troposphere, can suppress the formation of hydroperoxides depending on the 

level of NO present [Kleinmann, 1991; Stewart, 19951: 

NO + HO2 -+ NO2 + OH 

NO + CH300 (+ 0 2 )  -+ NO2 + HCHO + HO2 

(R5) 

(R6) 

Observations from South Pole during the polar day show that H202 first increases with increasing 

NO, and decreases once NO levels exceed 100 pptv [Hutterli, et al., 20041. 

With methane as the only significant organic peroxy radical precursor at remote sites, 

methylhydroperoxide (MHF’, CH300H) is expected to be the dominant organic peroxide in 
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Antarctica. Photolysis and attack by the OH radical are the main photochemical sinks for 

hydroperoxides. 

H202 + hv + 2 0 H  (R7), (h < 355nm) 

CH300H + hv (+ 0 2 )  +' HCHO + OH + HOz (R8), (h < 360nm) 

H202 + OH -+ H20 + HOz 

CH300H + OH -+ CH300 + H20 

(R9) 

(R10) 

Wet deposition affects the highly water soluble H202 and less so higher organic peroxides. This 

follows from the fact that the Henry's Law constant for MHP is only 0.1 % of that for H202 [Lind 

and Kok, 19941. Dry deposition of ROOH above snow and ice surfaces can also impact 

atmospheric levels, as model studies at South Pole showed [Hutterli, et al., 20041. It has to be 

noted though that deposition is reversible for these gases and changes in temperature of the 

surface snowpack drive a cycle of emission and uptake until the top layer is buried by additional 

accumulation and disconnected from further exchange [Hutterli, et a/., 200 1 ; WoIff and Bales, 

19961. 

The only Antarctic hydroperoxide data available are summer observations of H202 at 

South Pole [Hutterli, et al., 2004; McConnell, et al., 1997b], spot measurements from a traverse 

in Dronning Maud Land (73-76"s) [Fuhrer, et al., 19961 and observations over various seasons at 

the coastal Neumayer Station [Jacob and Klockow, 1993; Riedel, et al., 20001. 

The main goal of our study was to understand factors controlling the photochemistry of 

hydroperoxides in the background atmosphere above Antarctica, away from anthropogenic and 

biogenic emission sources and across a wide gradient of temperature, accumulation rate, latitude 

and elevation. There are two motivations. First, hydroperoxides are 'diagnostic tools' of 

atmospheric oxidation capacity (e.g. Riedel, et al., 2000 and, Lee, et al., 2000), however a 

quantitative link to polar HO, radical levels is lacking. Second, a quantitative understanding 

linking ROOH, oxidant levels, solar radiation and climate is essential to interpreting variability in 

ROOH from ice cores in terms of atmospheric change. 

2. Methods 

We measured concentrations of atmospheric hydroperoxides in ambient and firn 

interstitial air above the West Antarctic Ice Sheet (WAIS) during three 2-month-long ground 

traverses from 2000 to 2002 (Figure 1; Table 1). Sinks and sources of ROOH were also 

investigated, including radiative conditions, atmospheric properties and snow-atmosphere 

exchange. Results were integrated using a photochemical box model. 
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Traverse routes connected low-elevation WAIS regions with the cold and dry East 

Antarctic Plateau (Table 1). Each site was occupied typically for 1-4 days and atmospheric 

experiments were carried out 500 m upwind from the main camp in a Scott Polar tent (2000) and 

a heated Weatherhavenm shelter mounted onto a sledge (2001-2002). Mixing ratios of 

atmospheric hydroperoxides were monitored continuously using a 2-channel method, with total 

peroxides determined in channel 1 [e.g. Jacobi, et al., 20021 and the amount and speciation of 

individual peroxides measured in channel 2 (Figure 2). For each channel ambient air was drawn 

through an insulated, heated PFA (Vi" I.D.) intake line (typically 1.4 STP-L min-') mounted at -1 

m above the snow. 

Peroxides were scrubbed from the air stream into aqueous solution and analyzed using a 

fluorescence detection method [Jacobi, et al., 20021. A number of instrument upgrades were 

made following the 2000 field season to improve performance. Separation of H202 and organic 

hydroperoxides was achieved using HPLC [Kok, et al., 1995; Lee, et al., 19951, involving 

automatic injection of a 912 p1 sample every 10 minutes, with post-column chemistry and 

detection as in channel 1. Instrument response was calibrated 1-2 times per day with 

commercially available H202 and M H P  standards synthesized in our lab [after Rieche and Hi&, 
19291. 

Firn interstitial air was sampled at 6 sites by periodically alternating a single intake line 

between ambient and fim air every -30 minutes over a 4-6 h period. To sample fm air a hole was 

cored to -10 cm depth, the intake line inserted and snow packed around the line. 

Channel 2 output was linearly interpolated to the sample times of channel 1 (1 value per 

10 s) and used to correct channel 1 for contributions of organic peroxides. Collection efficiencies 

(CE) for MHF' determined in the lab at 5.8 "C and 13.0 "C to be 0.86 and 0.75, respectively, were 

in agreement with Henry's Law (equilibrium constants adopted from Lind and Kok, 1994). 

Therefore data were processed with CE calculated according to Henry's equilibrium using coil 

temperature and pressure. Coil temperature was controlled to within 0.1 K and coil pressure 

estimated based on observed ambient pressure. The variability in ambient pressure on ITASE 

(range 690-840 mbar) would lead to overestimates of CE by up to -4%, if not accounted for. 

Liquid flow rates were corrected for evaporation occurring in the coil scrubbers with corrections 

being generally on the order of 5%. 

The limit of detection (LOD), defined as 3 times the baseline standard deviation, for 

H202 from channel 1 was 50 pptv during the first two field seasons and 30 pptv during the last 

one. The precision was usually better than 20 pptv. MHP measurements from channel 2 had a 

LOD of 4 5 0  pptv in 2001 and <30 pptv during 2002 with precisions amounting to 60 pptv. 
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Overall accuracy of the measurements for both species is better than 20%, where the largest 

contributions to the overall error originate from the uncertainties in liquid flow rates and coil 

pressure (MHP only). Most H202 data reported are from channel 1, with H202 from channel 2 

only used in the case of data gaps. 

Firn and ambient air formaldehyde (HCHO) levels (24-hr averages) were determined 

using Sep-PakB DNPH-Silica Cartridges (Waters, Milford, MA) containing acidified 

dinitrophenylhydrazine reagent coated on a silica sorbent [Kleindienst, et al., 19981. Sample air 

(2200 to 3000 L) was pumped through an ozone scrubber and then through the cartridge, which 

was mounted in an insulated housing and kept above freezing. Intake lines were also insulated 

and heated, as noted above for ROOH. After sampling sample cartridges (including blanks) were 

sealed, wrapped in aluminum foil and transported frozen back to the US for analysis. 

Standard meteorological variables, including air temperature, atmospheric pressure and 

wind speed, were measured at each site, with surface W - A  irradiance (315-378 nm) added in 

2001 and 2002. 

Balloon soundings using RS-80 (Vaisala, Helsinki, Finland) radiosondes attached to a 

helium-filled balloon were carried out frequently in order to determine the thermal structure and 

ozone profile of the atmospheric boundary layer. During a typical sounding experiment, the 

balloon was frequently raised and lowered over a time period of -1 hr at a rate of 1-2 m s-' using 

a 1000 m long tether and an electric winch. Air temperature, atmospheric pressure and relative 

humidity were transmitted to a ground station consisting in radio antenna, receiver and a 

computer as a data logger. In 2001 ozone was measured at the ground level in between tethered 

balloon launches. In 2002 surface ozone was determined continuously at each site using a 2B 

Technologies (Golden, CO) ozone monitor [Helmig, et al., 20021. Instruments were usually 

placed in the heated tent and a Teflon sample line was passed to the outside and mounted 1 m 

above the snow about 2 m away from the tent. 

We used the NASA-Goddard Flight Center (GSFC) point photochemical model to 

integrate and evaluate measurements [Stewart, 20041, with modifications necessary to simulate 

the Antarctic boundary layer. The model chemistry contains a basic NO,-H0,-0, scheme 

including methane, ethane and ethene oxidation, but with the addition of a simplified DMS 

oxidation scheme [Sander and Crutzen, 19961. There are 30 variable species undergoing 70 

reactions. In addition to chemical production and loss, several species are assumed to have 

physical sources and sinks, most importantly NO, H202, and HCHO. These were varied 

sinusoidally with the solar elevation angle, the maximum flux occurring at the maximum solar 

elevation angle. Fluxes were converted to source values by assuming they are distributed through 
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a 250 m boundary layer. Deposition velocities are mostly from Huuglustuine et al. [ 19941, except 

that the rate for HCHO was taken for the same as that for CH3CH0. 

Model runs were constrained with time series of atmospheric chemistry and meteorology 

data. Total ozone burden was extracted for each location from the Total Ozone Mapping 

Spectrometer (TOMS) dataset (ftD.toms.gsfc.nasa.gov). Data gaps were filled using scaled 

Dobson meter measurements from South Pole. CO, Cl& and surface-ozone data were available 

from the NOAA CMDL air sampling network station at South Pole (ftD.cmdl.noaa.gov). Based 

on a comparison with ozone measurements during ITASE, the surface-ozone time series fiom 

McMurdo-Arrival Heights on the coast were considered representative for the West Antarctic Ice 

Sheet, while time series from South Pole were taken for sites on the Antarctic Plateau. AWS 

(Automatic Weather Station) data from Byrd Station (httd/uwamrc.ssec.wisc.edu/) and the 

South Pole (ftp.cmdl.noaa.gov) provided the meteorological input of air temperature, atmospheric 

pressure and humidity. 

. 

3. Results 

3.1 Atmospheric concentrations of peroxides 

Means, standard deviations and ranges for H202 during ITASE 2000, 2001 and 2002 

were 3215158 (~50-888) pptv, 65ort176 (141-1212) pptv and 3305147 (<30-918) pptv, 

respectively (Figure 3). For ITASE 2001 and 2002 MHP levels were 3175128 (450-1125) pptv 

and 304f172.2 (<30-1025) pptv, respectively. h4HP mixing ratios in ambient air were in general 

as high as or lower than H202, with the exception of measurements during a storm event at site 

02-2 (Figure 3c). 

MHP, the only higher organic peroxide detected, typically contributed 12-15% to the 

total fluorescence signal in channel 1 .  After this correction H202 concentrations from channel 1 

compared well with results from the HPLC method. During ITASE 2000 MHP was detected in 

the ambient air at three sites (00-4, 00-5 and 00-7), but low signal to noise ratios and baseline 

drifts did not allow quantification. 

While MHP showed only low frequency changes over several days, H202 exhibited a 

diurnal cycle at many sites during times when wind speeds were low (0-5 m s-l). The daily 

maximum Hz02 levels were usually in phase with or lagged air temperature maxima by up to 4 

hours. The amplitude of daily cycles, when recognizable, ranged from 130 up to 380 pptv. The 

daily amplitude of solar elevation angle (SEA) decreases with southern latitude and is zero at the 

South Pole. Correlations between daily amplitudes of either H202 or air temperature and latitude 
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showed no significant trend at the 99% level, but at locations south of 80"s H202 diurnal cycles 

were less frequent and disappeared on the Antarctic Plateau all together. 

Mean atmospheric levels of MHP at each site show a significant decrease between 76" 

and 90" S, from a high of 491*296 pptv to a low of 102*41 pptv (Figure 4b). It is notable that the 

range and standard deviation of MHP concentrations also show a statistically significant, linear 

decrease with more southern latitudes. The latitudinal trend of H202 is more complicated, ranging 

from a high of 803*150 pptv to a low of 230*56 pptv with ITASE 2000 observations in general 

lower than in 2001 at similar latitudes (Figure 4a). The contribution of MHP to total peroxides 

(Figure 4c), ranged from 0.04 to 0.98 with a mean of 0.39*0.15. The highest mean value of 0.62 

was observed at 02-2, the only site with a value above 0.5. 

3.2 Firn air measurements 

A total of 8 sets of firn air measurements were carried out, mostly between local noon 

and local midnight (median solar time 16:40). In 6 of the 8 sets, fim-air H202 was 1.3-3.5 times 

ambient air concentrations (Table 2) with gradients between the upper 10 cm of snow and the 

atmosphere ranging between 0.1 and 13.3 ppbv/m. These gradients assume that the shallow layer 

above the snow surface is well mixed and H202 levels between the air-snow interface and 

measurement height of 1 m are the same. Note that fim and ambient air measurements were not 

concurrent and therefore ratios assume that neither firn nor ambient air concentrations changed 

significantly over two subsequent -20 min sampling intervals of fim and ambient air. In 2 cases, 

at site 01-5 and 02-2, ambient levels of H202 were higher than in the fim. On the other hand, 

MHP mixing ratios exhibited no significant differences, partly due to increased scatter during the 

sampling of fim air. 

All fim-air results are from channel 1. When firn air was sampled HPLC data showed 

large scatter and H202 values 2-3 times those from channel 1, and were therefore discarded. 

Our firn air experiments were generally done on calm days; wind speeds were close to 

zero at site 01-5 and less than 4 m / s  at the other sites, where measured (02-1 and 02-5). 

Movement of H202 molecules in the open firn space is reduced by sorption on the media and 

tortuosity effects. Effective molecular diffusivities Def were estimated after Schwandev et 

al. [ 19891 based on measured atmospheric pressure, air temperature and snow density and ranged 

between a low of 8.99 x m2s-' at site 01-5 and a high of 1.35 x 10.' m2s-l at the South Pole, 

which is equivalent to a reduction by up to 30% when compared to the free air diffusivities. 

Characteristic diffusion times t across distance d of 1 cm following the Einstein-Smoluchowski 

relationship t = 0.5 x d2 De/ were 4-6 s. These estimates are higher than the 1 s modeled 
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previously by Hutterli et al. [2003], but still are only 10% (50%) of South Pole (Siple Dome) 

translation times due to forced ventilation (modeled vertical ventilation velocities at wind speeds 

of -3 m s-' were 1 mm s" at Siple Dome [Albert, 20021 and 0.2 mm s'l at South Pole [McConnell, 

et al., 19981). It is thus assumed that molecular diffusion rather than forced ventilation due to 

pressure pumping induced by horizontal airflow across a rough snow surface dominated vertical 

fluxes across the snow-air interface. 

Mean snow pack emissions of H202 were 7.0 x 10'' molecules m-2s-' ranging fkom 1.8 x 

lo8 to 2.6 x 10l2 molecules m-2s-1, while at sites 01-5 and 02-2 net deposition fluxes were on 

average 3.1 x 10' ' molecules m-2s-' (Figure 5). The mean HCHO flux from the data sets at Byrd 

and 02-5 was 9.4 x 10" molecules m-2s-1. A linear regression between gradients and mean air 

temperatures during the experiments showed a weak correlation (3 = 0.18), but significant at the 

99% level. Other factors, however, such as latitude and snow concentrations of H202 integrated 

over the top 30 cm exhibited no statistical relationship either to fluxes or to gradients (Figure 5). 

3.3 Modeling results 

The photochemical box model was run at two sites representing two extrema of 

conditions covered by ITASE. First, Byrd is a site at lower elevation and latitude with noticeable 

diurnal cycles of SEA (13 to 33") and air temperature (-17 to -1lOC) in December (air 

temperatures measured on-site compared well to the 19-yr mean diurnal cycle for Byrd in 

December, derived fkom AWS data). Second, South Pole is a site with constant SEA and 

consequently no diurnal cycle; air temperatures averaged -259°C during the first week of 

January 2003. Stratospheric ozone concentrations had already recovered from the annual 

springtime depletion when field measurements were carried out, and amounted to 332 Dobson 

Units @U) above Byrd and 272 DU above the South Pole. 

The model included dry deposition of H202 and MHF' with rates set initially to 0.32 and 

0.01 cm s-', respectively. The value of 0.32 cm s-' for H202 suggested by Hauglustuine et ul. 

E19941 translates into a deposition rate of 1.3 x s-' assuming a boundary layer height of 250 

m, which is of the same order of magnitude as the first-order heterogeneous removal rate of 9.3 x 

s-' derived for South Pole [Slusher, et al., 20021. The chosen box height of 250 m in the 

model was justified by the range of observed mixing layer heights. Most of our balloon 

soundings, including a total of 117 measured vertical profiles at ITASE 2001 and 2002 sites, 

showed very stable surface inversion layers during the coldest time of the solar day of 20 to 490 

m (mean 132 m) vertical extension followed by the development of a mixed layer during local 

morning to late afternoon hours, when the surface was warming, ranging from 13 m to 354 m. 
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With parameters set to their standard values, model output of H202, MHP and HCHO 

was 18%, 14%, 56% at Byrd and 4%, 7% and 11% at South Pole when compared to observed site 

means (Figure 6). In a second set of model runs maximum observed difhsional fluxes of H202 

and HCHO were introduced into the model to simulate a heterogeneous snowpack source. In 

addition, the MHP production rate from CH302 + HOz was increased within its estimated range of 

uncertainty [DeMore, et al., 19971. Deposition velocities for HCHO, MHP, and H202 were also 

reduced, but with negligible effect at times corresponding to the observations, Model output 

matched site means of atmospheric mixing ratios within the observed lo variability, however 

depending on the NO background chosen, fit was optimal either for H202 and HCHO or for H202 

and MHP, but not for all 3 chemical species (Figure 6). 

4. Discussion 

4.1 Relative hydroperoxide levels 
I 

Mean December H202 levels in 2000 and 2002 were 1.6 times the average concentrations 

determined on the coast at Neumayer Station (200 vs. 325 pptv) [Riedel, et al., 20001 while the 

range of both data sets compares well (-30-900 pptv). The coastal mean values, however, 

covered data from September 1997 to March 1998 and February 1999, including low spring and 

fall values. Our average H202 mixing ratios on the Antarctic Plateau at sites 02-4, 02-5 and the 

South Pole (230-290 pptv) were similar to December 1995 (180-250 pptv) [McConnelZ, et al., 

1997b] and 2000 (280 pptv) [Hutterli, et al., 20041 levels at the South Pole. It is striking that 

mean H2O2 concentrations above WAIS during December 2001 were twice those during the other 

field seasons (650 vs. 325 pptv) and maximum values were the highest ever reported from 

Antarctica (1200 pptv). These levels, however, were still lower than concentrations observed at 

Summit, Greenland by Bales et al. [1995] (500-2000 pptv), Jacobi et al. [2002] (650 pptv) and 

Frey and Bales [1999] (400-3800 pptv). 

When compared to the only other existing study, MHP mixing ratios fiom 2001 and 2002 

were 60%.higher than levels at Neumayer (310 vs. 190 pptv) [Riedel, et al., 20001, while again 

those included values from the entire sun lit season. It is interesting to note that MHP, at the South 

Pole in the first week of January 2003 (100 pptv) was ten times that predicted by photochemical 

steady state model runs for the ISCAT campaign in December 2000 [Hutterli, et al., 20041. 

Our MHP:(MHP+H202) ratios of 0.3910.15 (range 0.04 to 0.98) were on average lower 

than reported from Neumayer of 0.57+0.26 (range 0.1 to 1.0) [Riedel, et al., 20001, but in the 

range of values found in the mid latitudes of the North and South Atlantic where ratios of 

0.3210.12 [Weller, et al., 20001 and 0.4810.14 [Slemr and Tremmel, 19941 were reported. The 
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magnitude and temporal variability of these ratios are thought to reflect preferential depletion of 

H202 by dry and wet deposition, which may also be why ratios in coastal Antarctica are higher 

than in continental air. The highest ratios measured on ITASE, during a storm event at site 02-2, 

were not due to depleted H202 but rather a consequence of elevated MHP (Figures 3c and 4c). 

Wind speeds during the storm exceeded 18 d s  and created a zone of blowing snow extending 

vertically several tens of meters and decreasing visibility to below 10 m. MHP levels were highly 

variable reaching up to 600 pptv, when H202 remained around -200 pptv. After wind speeds 

decreased to 13 m/s the snow suspension settled and MHP dropped to 200 pptv. Surface ozone 

during the storm showed a distinct drop from 17 ppbv down to 1 1 ppbv and recovered 24 hrs later 

to 14 ppbv, when there was no layer of blowing snow. We eliminated evaporating snow crystals 

in the intake line as a cause for this observation since the atmospheric H202 signal was not 

affected. Photochemical experiments at Summit, Greenland showed that OH concentrations in 

ambient air were consistently higher than model predictions, especially during episodes of high 

winds and blowing snow, suggesting that an unknown mechanism converts H 0 2  into OH [Huey, 

et al., 20041. Though the true reactions involved are not understood we suspect that elevated 

MHP during the storm at 02-2 also reflects a shift in HO, partitioning. 

The surprisingly high levels of organic hydroperoxides have consequences for the 

accuracy of current atmospheric analytical methods. The bulk peroxide fluorescence detection 

method (here channel 1) was applied in the past to determine absolute H202 levels under the 

assumption that higher organic peroxides can be neglected at remote polar sites such as Central 

Greenland [Bales, et al., 1995; Sigg, et al., 19921. However, our findings show that in West 

Antarctica the presence of MHP would lead on average to H202 overestimates by up to 15%, 

higher than previously assumed for Summit, Greenland [Sigg, et al., 19921. Since MHF' lacks the 

diurnal cycle exhibited by H202, MHP:(H202+MHP) ratios increase during the coldest time of the 

day and would lead to potential overestimates of H202 of, in our case, -50%. Therefore, H202 

concentrations determined with the bulk method during times when the sun is at its minimum 

elevation during the polar day should, if uncorrected; be interpreted with caution. 

4.2 Factors controlling the variability of ROOH 

Both photochemical and physical sinks and sources as well as local meteorological 

conditions (atmospheric water vapor, air temperature, surface U V  radiation) affect the variability 

of trace chemical species in the atmosphere. These not only differed across the ITASE sites, but 

also varied during the measurement periods. Therefore our results contain both temporal and 

spatial variability (Figures 3 and 4). 
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Summer air temperatures dropped from -12 to -27°C in moving from WAIS onto the 

Antarctic Plateau, largely as a function of altitude, ?=0.67 (Figure 7a). Lapse rates across all 3 

ITASE seasons were sub-adiabatic at -8.45 "Wkm. Specific humidities closely followed air 

temperature, ?=0.83 (Figure 7b), as expected from the temperature dependence of water vapor 

pressure, and show that the air above WAIS contains 3 times the atmospheric moisture as does 

that above the Antarctic Plateau. Wind speeds were in general highly variable, but during the 

ITASE 2002 season they appeared to be less so and lower, often below 5 m/s on the Antarctic 

Plateau (Figure 7c). At latitudes north of 85 "S measured surface ozone levels remained below 20 

ppbv most of the time, while they were significantly higher on the Antarctic Plateau (sites 02-3, 

02-4 and 02-5) reaching a maximum at the South Pole (Figure 7d). Low surface ozone on the 

coast and elevated levels at South Pole during the summer are also observed in time series from 

Arrival Heights-McMurdo (77.8 "S 166.8 "E) and South Pole over the past decade (data from 

flp.cmdl.noaa.gov). The main precursors of hydroperoxides in the remote troposphere, CH4 and 

CO, are well mixed across the entire study area, as seen by comparison of data sets from Halley 

Station (75.6 "S 26.6 OW), Palmer Station (64.8 "S 64.1 OW) and South Pole, and declined 

between November and January, from 1.71 ppbv to 1.70 ppbv and 55 ppbv to 38 ppbv, 

respectively (ftD.cmdl.noaa.gov). 

SEA at solar noon varied between 36' and 23" across all ITASE seasons and daily 

amplitudes dropped from 28" at site 01-6 to 0" at the South Pole. As a consequence, daily 

amplitudes of air temperature at Byrd were 5.7 OK, with no diurnal pattern at South Pole. 

Measured surface W - A  radiation tracked the variability in SEA (?=0.96; data not shown). 

Unfortunately, our measurements did not extend to the UV-B region of the solar spectrum, where 

the absorption of H202, MHP and 0 3  is strongest and, as expected, W - A  and O3 burden showed 

no significant relationship. Therefore we used the Tropospheric Ultraviolet-Visible ( T W )  

radiation model version 4.1 (httu://m.acd.ucar.edu/TW) [Madronich and Flocke, 19981 to 

calculate surface W - B  (280-315 nm) and photolysis rates of H2O2, M€€P and 0 3  taking into 

account current location, elevation and local total ozone burden under the assumption of clear-sky 

conditions and a surface albedo typical for the Antarctic ice sheet of 0.9 [King and Turner, 19971. 

Daily means of modeled surface W - B  were highest during ITASE 2001, up to double levels in 

2000 and 2002 at the same time of year in similar regions (Figure 8 d-f). Daily amplitudes were 

large (Figure 8 d-e) and decreased to zero towards the South Pole (Figure 8 f). Fluctuations in the 

0 3  burden clearly dominate seasonal SEA changes in driving the variability of surface W - B ,  as 

can be seen by comparing the results to model simulations where O3 column density is held 

constant at 290 DU (dotted line in Figure 8 d-f). At the end of November 2001, O3 burden 
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dropped within 7 days by 70 DU, while the model predicted a 5-fold increase of surface UV-B in 

addition to the seasonal SEA effect. 

H202 and M H P  are both positively correlated with specific humidity (Figure 9a and e) as 

water vapor is a significant precursor for both. High UV-B also gives high H202 mixing ratios 

(Figure 9 b). However, M H P  was not sensitive to UV-B (Figure 9 f). While H202 levels dropped 

off with increasing surface ozone concentrations on the Polar Plateau (Figure 9c), M H P  increased 

with O3 between 10 and 20 ppbv. Above 20 ppbv MHP levels were suppressed, less variable, 

with median values below 150 pptv. These trends of both hydroperoxide species are consistent 

with an increase in net production of surface O3 through reactions R5 and R6 at the expense of 

hydroperoxide formation. Additional NO is released from the snow pack after photolysis of N 0 i  

stored in the upper snow layer. Indeed, elevated surface O3 levels observed at the South Pole 

suggested photochemical production rates of 2.2 to 3.6 ppbv/day [Crawford, et al., 20011 and NO 

levels were surprisingly high [Davis, et al., 2004b1, in part due to snow emissions of NO, from 

N 0 i  photolysis [Honrath, et al., 19991. During periods of high NO H202 levels were suppressed 

[Hutterli, et al., 20041. 

Local meteorological conditions affect vertical and horizontal transport and thus the 

variability of chemical species. Higher wind speeds, at least up to 10 m s-', resulted in lower H202 

(Figure 9d), while MHP and wind speed show no significant correlation (Figure 9h); an exception 

was the storm event described above. While this is not definitive, it is consistent with the fact that 

H202 emissions out of the snow pack are mixed into the boundary layer and thus diluted through 

turbulent transport much more efficiently during periods of higher wind speeds than during calm 

days, aswas observed in the case of NO during the ISCAT campaign [Davis, et al., 2004al. 

Snow pack emissions of H202 and HCHO at the South Pole in December 2000 were 

determined to be on the order of 1 x 1013 and 2 x 10I2 molecules m%-', respectively [Hutterli, et 

al., 20041. Our gradients were smaller, resulting in diffusional fluxes about 10% of those from 

ISCAT 2000 [Hutterli, et al., 20041 (Figure 5). Differences are due in part to dilution of fm air 

with an unknown amount of ambient air during sampling, making reported values lower limits. At 

these reduced rates the reservoir of H202 in the snow phase is not limiting, e.g. at maximum 

emission flux, average H202 snow concentrations of 4.4 pM and a mean snow density of 370 kg 

m-3 in the upper 10 cm of snow pack [Frey et al., in preparation] it would take -1.2 yr to deplete 

H202 completely from the upper snow layer. 

The observed large diurnal cycle of H202 is most likely caused by the same reversible 

temperature driven exchange mechanism as at Summit, Greenland, where diurnal cycles have 

been explained by net emission during the day and net deposition during the night [Hutterli, et 
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al., 20011. Even though no decrease in amplitude with more southern latitude was observed, our 

findings that H202 and air temperature amplitudes show a weak correlation and no diurnal cycles 

were detected south of 85 "S are consistent with a decrease in variability of air temperature and 

snowpack emissions at the more southern latitudes. 

A significant physical MHP source in the surface is unlikely, given that no diurnal cycle 

was observed and that MHP remained below the detection limit of 7 ppbw in all samples from 1 

m snow pits collected at ITASE 2000 sites [Frey et al., in preparation]. Previous attempts to find 

MHP down to a stated threshold of 0.1 ppbw in an Antarctic ice core at Law Dome failed as well 

[Gillett, et al., 20001. 

The contribution of the snow pack to boundary layer photochemistry also depends 

strongly on atmospheric dynamics and the vertical extent of the planetary boundary layer. For 

example, at site 02-4 ('Hercules Dome') H202 concentrations dropped between 25-Dec 0:OO UTC 

and 25-Dec 3:OO UTC from levels above 400 pptv down to -220 pptv. Balloon profiles from 24- 

Dec 21:35 UTC and 25-Dec 2:45 UTC showed the existence of a mixed layer of 12&150 m 

vertical extent, remaining virtually unchanged over the same time period, and therefore dilution 

effects due to an expansion of that layer can be excluded. Air temperatures dropped from -1 8 to - 

26 "C, leading to a change in H202 consistent with decreased snow pack emissions or even net 

deposition during lower temperatures. Back trajectories (see below) showed that air originating 

from the Weddell Sea sector from 4 days prior arrived with only marginal vertical movements 

within the planetary boundary layer at 02-4 at the same time. 

At Neumayer Station advection of marine air was responsible for sporadic increases in 

ROOH during the polar night when the photochemical production of peroxides is shut down 

[Riedel, et al., 20001. Also inland locations such as South Pole can be influenced by influx of 

marine air [Swanson, et al., 20041. Daily back trajectories calculated for all ITASE seasons with 

the NOAA HYSPLIT model [http://www.arl.noaa.gov/ready; Draxler and Rolph, 20031 show 

that air masses originating in the Amundsen, Bellingshausen or Weddell Sea sector can reach 

central locations on the West Antarctic Ice Sheet within less than -3 days, with the air at ground 

level moving along the topography. According to the same trajectories air masses are also 

advected frequently through katabatic flow from the Antarctic Plateau down slope to lower 

elevations of WAIS. We compared these transport times with atmospheric lifetimes z of H202 and 

MHP with respect to reaction with OH and photolysis using Th202 = (kR9 [OH] + kR7)-l and TMHP = 

(kR10 [OH] + kRg)-l. Reaction rates from Atkinson et al. [1997] were extrapolated to conditions at 

ITASE locations and photolysis rates calculated with the TUV model. The lifetimes of H202 and 

M K P  averaged over all field seasons were 49 hr and 63 hr, assuming coastal levels of OH of 0.5 x 
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lo5 molecules cm-3 [Jefferson, 19981 and decreased to 25 and 34 hr, when the ISCAT 2000 mean 

for OH of 2.1 x lo6 molecules cm-3 at South Pole [Mauldin. et al., 20041 was used. Including dry 
deposition decreased ranges to 14 and 57 hr in the low and 11 and 33 hr in the high OH scenario. 

Thus it is unlikely that H202 at locations, in the interior of Antarctica in summer time, 

even during meteorological situations that facilitate fast transport fiom the coast, is impacted by 

distant off-continent source regions. In the case of M H P  long range transport might play a role at 

WAIS locations closer to the coast due to the smaller sensitivity to heterogeneous removal and 

therefore longer lifetimes, however our observations lack any sudden changes in concentration to 

support this. 

4.3 Stratospheric ozone 

The high H202 and lower MHP concentrations above WAIS during 2001 can be 

explained by 3 factors: a) change in relative abundance of atmospheric precursors CO, C& or 

water vapor, b) variability of the physical heterogeneous snow pack source, and c) changes in 

surface UV-B, with corresponding impacts on the H0,-NO, cycle and the ROOH budget. In 

order to evaluate interannual differences of ROOH levels we compared 15-day periods in 

December 2000, 2001 and 2002 when measurements were carried out at locations with similar 

features (Table 3). By comparing equal time periods of different years we exclude seasonal 

variations of the solar elevation angel as a contributing factor and expect UV-B to change only as 

a function of location and stratospheric ozone. Mean UV-B calculated with a constant ozone 

overhead column of 290 DU is indeed comparable between the 15-day periods of all 3 seasons, 

with the slightly lower value for 2002 reflecting the fact that 02-40, Byrd and 02-1 are located at 

more southern latitudes (Table 3). Between November-27 and December-12 in 2001 H202 was 

70% higher than during the same time period in 2000 and 2002, while MHP was 80% the levels 

encountered in 2002 (Table 3). 

It is unlikely that atmospheric precursors of H202 are responsible for much of the 

interannual differences. While C& mixing ratios in all 3 years were almost identical, December 

2000 had 6-8 ppbv less CO than 2001 and 2002. However, no effect on mean H202 is obvious, 

since December 2000 levels were comparable to the mean of December 2002 (Table 3). 

Atmospheric moisture was 80% higher in 2002 when compared to 2001, while the concurrent 

change in H202 was opposite of what is expected if the difference was driven by humidity 

changes. MHP, however, followed the pattern in atmospheric moisture. 

Systematically higher air temperatures in combination with stable atmospheric 

stratification and recent deposition prior to air sampling could potentially lead to increases in 
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H202 levels as a consequence of temperature driven release from the snow pack [Hutterli, et al., 

20011. Conversely, regularly occurring fog events could lower H202 levels through net 

deposition, as suggested to be the primary reason for below average H202 levels during a 3-week 

period at Summit, Greenland [Hutterli, et al., 2004; Jacobi, et al., 20021. However, wind speeds 

showed no significant difference between seasons, mean air temperatures were lower when H202 

was high (Table 3), and fog events were observed occasionally, but were not systematically more 

frequent on the ITASE 2000 and 2002 traverses. 

This leaves systematic differences in surface W - B  as the leading cause for differences in 

H202. Previous model studies predicted that enhanced surface W - B  increases ozone photolysis, 

leading to enhanced OH and H202 [Fuglestvedt, et al., 19941. Ozone column densities were low 

in December 2001 and dropped below the ozone-hole-defining threshold of 220 DU [Newman, et 

al., 20041 above most of the West Antarctic Ice Sheet, including sites 01-1, 01-2 and 01-3 

(Figures 8 and IO). In the present case a decrease in O3 column density can increase production of 

H202 through two mechanisms: enhanced ozone photolysis and increase of photolytically 

induced snow pack emissions of NO in a low-NOx regime, where both species are positively 

correlated. This is consistent with the low MHP in December 2001, which according to our model 

sensitivity study should decrease rapidly as NO concentrations rise. 

With high surface W - B  in 2001 (Figure 8e) photolysis rates of ROOH and ozone are 

expected to increase, with the latter showing large positive perturbations when ozone burden is 

low (Figure 11, 4'h row). The first direct observations at South Pole during ISCAT 2000 revealed 

that decreases in overhead O3 column density were accompanied by increases in J ( 0 3  -+ 
O('D)+02) and OH concentrations [Mauldin, et al., 20041. Ozone photolysis rates calculated with 

the TUV model during times of low O3 burden are up to 5 times the observed values during the 

first week of December 2000 at South Pole, and maximum values >5 x s-l are comparable to 

photolysis rates calculated for mid latitude locations (non-polluted sky at sea level, SEA of 0" and 

surface albedo 0.03, [Jacobson, 19991). Therefore, enhanced primary production of OH through 

O('D)+H20(,, + OH +OH after ozone photolysis followed by R1 appears to be one likely cause 

for additional H202 formation, more than outweighing increased H202 loss by photolysis. The 

slow decrease in observed surface ozone levels during the comparison periods in 2001 and 2002 

(Figure 11, 5" row) points also to a regime of net destruction of 03. 

The change in NO, chemistry due to increased surface radiation and nitrate photolysis in 

the snow results in a net increase in OH and H202. Surface radiation changes related to the ozone 

hole drive the rate of nitrate photolysis in the upper snowpack enough to increase NO, emissions 

and lead to a net production of ozone [Jones and WoL$ 20031, possibly explaining elevated 
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surface ozone levels observed at the South Pole during summer [Crawford, et al., 20011 starting 

in the late 1970s after the onset of the ozone hole. Box model simulations for the ISCAT 2000 

data set suggest that elevated and highly variable OH and H02+R02 are a direct result of equally 

high and variable levels of nitrous oxide. The reason for high OH is that NO is efficiently cycling 

H 0 2  into OH. Correlations between NO and OH or H202 both showed a positive relationship up 

to a threshold of -100 pptv of NO [Hutterli, et al., 2004; Mauldin, et al., 20041. Beyond that 

H202 production is suppressed. This hypothesis is supported by the observation of enhanced 

surface O3 on the Antarctic Plateau indicating net O3 production (Figure 11, 5~ row) and the 

lower M H P  in 2001 (Table 3). MHP formation is suppressed at lower NO levels than is H202 and 

shows a rapid decline as NO increases (see below). 

There is a time lag between changes in 0 3  burden and the response in H202 at the surface 

(Figure l l ) ,  most likely due to the fact that the system is not in photochemical steady state. 

Indicators of a low NO, regime are low surface ozone above WAIS and low NO levels reported 

from the coast [Jefferson, 1998; Jones, et al., 19991. Since our box model scales the NO source as 

the inverse square of the cosine of solar zenith angle and does not include at this point nitrate 

photolysis it comes to no surprise that modeled OH (not shown) and HzOz (Figure 11, 2nd row) 

fail to show a significant increase during low 03-burden episodes. Modeled H202 in 2001 is 

slightly higher than in 2002 and shows a small positive change after overhead ozone has passed 

through a minimum clearly not capturing the increase indicated by observations. ROOH observed 

at Neumayer Station during the period of stratospheric ozone depletion in 1997 showed mixing 

ratios comparable to typical winter levels and no obvious change [Riedel, et al., 20001. However, 

in the Neumayer data set a large increase in H202 occurs between day of year 310 and 320 

(1997), right around the time where surface O3 shows higher variability and tendency to increases 

as well. This is consistent with Jones and Wolf[2003], who found that the impact of change in 

UV-B radiation on nitrate photolysis and subsequently elevated NO becomes important later in 

the sunlit season at higher solar elevation angels. 

4.4 Atmospheric oxidation capacity 

Since calculated hydroperoxides in our box model runs were highly sensitive to the NO, 

background (not measured) the NO source term in the model was set to achieve modeled ambient 

NO levels within the range of existing measurements in Antarctica. Mean coastal NO levels 

reported from Neumayer Station [Jones, et al., 19991 and Palmer Station on the Antarctic 

Pensinsula [Jefferson, 19981 were less than 10 pptv, while high values were found at the South 
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Pole, averaging 133 and 244 pptv for Dec. 15-31 in 2000 and 1998, respectively [Davis, et al., 

2004bl. 

The sensitivity study showed that in a low NO, regime (Byrd), Hz02 increases linearly 

with NO and after reaching a maximum at 10 pptv drops off quickly (Figure 12a) due to the 

competing conversion of HOz into OH by NO (R5). The decrease in MHP at higher NO is even 

more pronounced, since two reaction channels consume respective precursors H02 and CH300 at 

the same time, R5. producing again more OH and R6 forming HCHO. According to this model it 

is hard to sustain elevated MHP at the high NO mixing ratios observed at the South Pole, since 

MHP decreases rapidly at NO levels rising beyond 40 pptv at the South Pole (Figure 12b). 

Predictions of NO (OH) levels based on optimum model runs, including physical sources of H202 

and HCHO, were 10 pptv (8.9 x lo5 molecules cm-') at Byrd and 42 pptv (2.4 x lo6 molecules 

~ m - ~ )  at South Pole, respectively. Thus within the lo range the modeling suggests that a 

combination of our observations of H202, MHP and HCHO consistently constrain the NO, 

background. As can be seen from Figure 12 MHP is the limiting species due to its high sensitivity 

to NO changes. Since NO, is controlling the oxidizing capacity in the troposphere above the ice 

sheet, as seen by the close relationship between NO and OH (Figure 12), we consider this to be a 

quantitative link between ROOH, HCHO and current atmospheric oxidation capacity. 

The modeled H0,-NO, chemistry at Byrd appears to be close to the composition of the 

atmosphere on the coast [Jefferson, 1998; Jones, et al., 19991, while the constrained simulations 

for South Pole are qualitatively in agreement with the ISCAT results and further confirm that the 

Antarctic Plateau is a unique atmospheric environment of high oxidizing power. However, it 

should be noted that NO levels above 100 pptv, as observed during ISCAT 2000, are clearly not 

in agreement with the relatively high MHP measured on ITASE. Since a physical snowpack 

source of MHP is unlikely, other photochemical reactions involving organic trace gases can 

potentially lead to increased MHP. Even at a remote location as the interior of the Antarctic there 

are appreciable amounts of organic molecules in the snow; e.g. the TOC content of South Pole 

snow samples was found to be similar to Arctic snow from Summit, Greenland or Alert, Nunavut 

[Grannas, et al., 20041. Ethene emissions from the snowpack, as observed at Alert, Nunavut 

[Bottenheim, et al., 20021, could contribute to MHP production through gas phase ozonolysis. 

Lab experiments provided evidence that reaction of ozone with alkenes can yield alkylperoxides 

including MHF' under dry conditions [Gab, et al., 1995; Horie, et al., 19941. Another possible 

mechanism is the photooxidation of acetone, CH3(CO)CH3 + hv + O2 + CH300 + CH3C(0)02, 

leading to the formation of additional methylperoxy radicals. Under low NO conditions more 

MHP is then produced through R4. The trace gas acetone was found to be emitted from high 
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latitude snowpack as results from the ALERT 2000 campaign show [Guimbaud, et al., 20021. 

However, formation mechanisms for organic hydroperoxides are in general still poorly 

understood and further field measurements including other possible organic precursor species are 

required to understand MHP sources in the remote environment. 

5 .  Conclusions 

First, it is important to note that the US ITASE ground traverse served as an excellent 

research platform for an extensive atmospheric sampling program in remote West Antarctica, 

providing a unique data set of atmospheric observations across latitudes, similar to measurement 

campaigns on oceanic vessels. Our findings from spatially distributed spot measurements of 

summer levels of ROOH above the West Antarctic Ice Sheet indicate that atmospheric water 

vapor, actinic flux and consequently ozone column density, and, in the case of H202, a 

heterogeneous snow pack source, are the main factors controlling atmospheric concentrations. 

The upper snow pack between 76 and 90 "S is a net source of H202, at least during the latter half 

of the solar day in summer and probably over the full diel cycle for many months, while a 

physical source of MHP is less likely to play an important role. First time quantitative 

measurements using HPLC show that MHP is the only important organic hydroperoxide 

occurring in the Antarctic troposphere, and is of similar concentration to H202 in the absence of 

enhanced surface W - B  fiom stratospheric 03 depletion. We show strong evidence for a positive 

feedback between stratospheric ozone depletion and surface levels of H202 by comparing 

differences in atmospheric moisture content, air temperature and photolysis rates from a radiation 

transfer model calculation. The difference of H202 above WAIS in the low 03-burden year 2001 

compared to the 2000 and 2002 seasons is significant. Enhanced surface UV-B radiation upon 

depletion in ozone column density affects H202 mixing ratios through increased ozone photolysis 

and increases in NO, following nitrate photolysis in the upper snow pack. This finding will 

impact the interpretation of century scale records of H202, which are currently being developed 

from shallow cores recovered at all ITASE locations [Frey, et al., 20041. 

The US ITASE traverse across WAIS provided a link between the two atmospheric 

environments, the coast and the Antarctic Plateau, where tropospheric chemistry in summer has 

been characterized before. Photochemical box model runs constrained by observations of H202, 

MHP and HCHO suggest that NO and OH levels on WAIS are closer to coastal values, while 

Antarctic Plateau levels are higher, confirming the unique nature of that region as a highly 

oxidizing environment. This also implies that the positive feedback on H202 from higher surface 

W - B  due to a thinning stratospheric ozone layer should be more pronounced in the WAIS region 
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where NO, levels are low. The modeled sensitivity of H202 and particularly MHP to NO, reveals 

the potential use of atmospheric hydroperoxides to constrain the NO background and to evaluate 

the current and also, using ice core reconstructions, past strength of a photolytic NO source in the 

snow pack. Since NO itself is tightly linked to the oxidation power of the atmosphere in remote 

regions, this link is expected to narrow upper and lower limits on atmospheric HO,. Future work 

will need to characterize organic precursors from the snow pack and improve the model 

parameterization of NO flux from nitrate photolysis in the snow pack in order to capture the large 

observed increase in H202. 
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Figure captions 

Figure 1. WAIS map (based on Antarctic Digital Data Base v4.1 httu://www.add.scar.ord) 

overlying the RAMP DEM [Liu, et al., 20011 showing traverse routes of the US component of the 

International Transantarctic Scientific Expedition (US ITASE; details of the multi-disciplinary 

expedition at http://www.ume.maine.edu/USITASE/) in 2000-2002 and the 2 1 locations of 

atmospheric chemistry observations. 

Figure 2. Schematic of 2-channel peroxide detector employed on ITASE; shown are air pumps 

(P), actuated injection valve (V), excitation source (Ex) and photo-multiplier tubes (PMT1 & 2). 

Figure 3. Mixing ratios of H202 (black symbols) and CH300H (grey symbols) from 3 ITASE 

seasons observed during the month of December in 2000 (a.), 2001 (b.) and 2002 (c.). H202 is 

reported as 10 min averages, while the plotted MHF' data represent single chromatograms, each 

one of them representing a -5 min average of sampled air. Note that as the season progressed the 

measurement location changed as well, as indicated by the site index attached to each group of 

data. Data gaps are time periods when the ground traverse was in transition to a different site and 

no measurements were done. 

Figure 4. Site averages of atmospheric mixing ratios of H202 (a) and MHP (b) and ratios of M H P  

to total peroxide (c) as a function of latitude. Symbols are means with error bars indicating one 

standard deviation and shaded areas the full range of measurements. 

Figure 5. Estimates of H202 fluxes based on measured gradients between ambient and fm 

interstitial air are plotted as a function of latitude. Bars represent the mean and error bars 1 0 

uncertainty. Note that at site 01-5 and 02-4 two sets of measurements are shown. 

Figure 6. Comparisons between observations and photochemical box model estimates of 

atmospheric H202, M H P  and HCHO mixing ratios for Byrd (a-c) and South Pole (e-g). 

Calculated NO background values are plotted as well for both sites (d,h). Various model 

scenarios include: 1) a base case with standard reaction rates and no heterogeneous fluxes for 

ROOH and HCHO (grey lines) and 2) multiple runs with reaction rates optimized for MHP 

production, emission fluxes of H202 and HCHO included and the NO source set for different 

backgrounds in December (blue and red lines). Black symbols are observed mean concentrations 

at each site with error bars indicating the lo uncertainty range, while symbols in grey represent 
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10 min averages of measured H202 and MHP. No DNPH results were available from South Pole, 

instead one 24 hr run from site 02-5 was used for comparison with no uncertainty range (g). 

Figure 7. Correlation plots of observed and calculated environmental parameters on ITASE: a. air 

temperature vs. elevation with the black line illustrating the linear trend (slope -8.45 IUm, r2 = 

0.67), b. observed specific humidity q. (symbols and error bars correspond to median, 25" and 

75th percentile of each bin) vs. air temperature. Also shown is potential qv at RH=lOO% (25'' and 

75" percentile as grey lines), c. wind speed vs. latitude and d. surface ozone vs. latitude. Symbols 

and error bars in a., c. and d. represent mean and l o  uncertainty at each site and individual field 

seasons are color coded: ITASE 2000 (blue), ITASE 2001 (black) and ITASE 2002 (red). All 

meteorological and surface ozone data used are 10 min averages from DecembedJanuary of the 

respective year (note that neither humidity nor surface ozone were measured in 2000). 

Figure 8. Panels a-c show daily ozone column densities from TOMS during each field season 

above the location of the ITASE traverse on the same dates. Panels d-f show calculated surface 

UV-B (280-315 nm), where the black line represents daily means and the area shaded in grey 

illustrates the amplitude between solar noon and midnight; surface W - B  radiation was also 

calculated for ozone column densities fixed at a constant 290 DU (dotted black line). 

Figure 9. Correlation plots of binned ROOH observations: (a./.e) H202/MHP vs. specific 

humidity qv, (b./f.) H202/MHP vs. calculated surface UV-B radiation (280-3 15 nm), (c./g.) 

H202/MHP vs. surface ozone and (d./h.) H202/MHP vs. wind speed. Symbols and error bars 

represent median values and inner quartiles (25" and 75" percentiles). All data used are 10 min 

averages in December 2001, 2002 and early January 2003 (wind speed and W - B  correlation 

plots contain also December 2000 data). 

Figure 10. Spatial distributions of total ozone above Antarctica are compared between December 

2000 (Panel a.), 2001 (Panel b.) and 2002 (Panel c.). Images show data recovered by the Earth 

Probe TOMS instrument (http://toms.asfc.nasa.aov/ozone). White areas represent data gaps. 

Figure 1 1. Atmospheric H202 and related parameters are shown from 2000, 2001 and 2002, each 

column representing one season of measurements. Areas shaded in grey highlight the comparison 

period November-27 - December-12 (Table 3). In row 1 daily column densities of ozone are 

plotted against time (grey symbols represent Byrd, while the black symbols take into account the 
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current position of the ITASE traverse on the ice sheet). The second row shows 10 minute (grey 

symbols) and 24 hour averages (black symbols) of observed Hz02. Plotted are also simulated 

Hz02 mixing ratios in 2001 and 2002 from the optimized fit to observations at Byrd in 2002 

(black line). The third row illustrates the variability of specific humidity (10 minute and 24 hr 

averages plotted as grey and black symbols, respectively; no data available from 2000). 

Calculated daily averages of photolysis rates for O3 (black symbols) and H202 (grey symbols) are 

shown in the fourth row, and surface O3 measurements from ITASE2001 and 2002 are plotted in 

the fifth row. 

Figure 12. Sensitivities of calculated H202, CH300H and HCHO to increasing NO background 

levels are shown for a. Byrd (29.11.02-7.12.02) and b. South Pole (2.01.03-5.01.03). Symbols 

represent output of individual box model runs for H202 (circles), MHP (grey triangles) and 

HCHO (squares). Observation ranges, defined as the mean plus and minus lo ,  are shown as 

shaded areas with solid, broken and dotted border lines for H202, CH300H and HCHO 

respectively. Note that at South Pole only one data point for HCHO is available (see text). Panels 

c. and d. illustrate the relationship across the same model runs between calculated NO and OH 

radical concentrations at Byrd and South Pole. 
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Tables 

Table 1. Locations of atmospheric chemistry observations 

lat/ long, elev, T", 

Site "SI "W m "C Dates 

1 1/27 - 12/6/00 

1217 - 12/9/00 

12/10 - 12/13/00 

12/14 - 12/17/00 

1211 8 - 12/22/00 

12/23 - 12/25/00 

12/26 - 12/29/00 

11/23 - 11/29/01 

1 1 I30 - 12/04/0 1 

12/05 - 121910 1 

12/10 - 12/12/01 

12/13 - 12/19/01 

12/20 - 12/24/01 

11/27 - 11/28/02 

11/28 - 12/7/02 

1218 - 12/13/02 

12/13 - 12/17/02 

1211 9 - 12/22/02 

12/23 - 12/27/02 

12/27 - 12/30/02 

0112 - 01/4/03 

a average temperature during atmospheric chemistry measurements 
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Table 2. H202 mixing ratios measured during firn air experiments. 

duration, ambient aird, firn aird, 

Site time" (local noon) hrs T&bISEAc pptv PPW 
01-5A 16-Dec-01 0:20 (17 51)  4 :20 -7.4 135.9 756 f 146 1442f 478 

01-5B 16-Dec-01 20:lO (17 :51) 5:20 -1 1.4 135.9 783 f 82 638 f 74 

02-1 10-Dec-02 23:59 (19 :13) 4:11 -17.0 130.9 416 f 232 625 f 52 

02-2 16-Dec-02 1 :13 (18 :55) 5:OO -24.1 I 30.9 177 f 32 128 f 12 

02-3 21-Dec-02 20:47 (18 :57) 4:33 -20.3 129.4 433 f 61 888 f 141 

02-4A 26-Dec-02 1:41 (19 :11) 5 :00 -23.7 126.4 198 f 36 257 f 87 

02-4B 26-Dec-02 6:58 (19 :11) 5 :40 -25.3 126.4 167 f 53 245 f 28 

02-5 29-Dec-02 20:50 (19 :13) 5:39 -23.3 124.9 213 f 158 742 f 258 

a median time of experiment 

mean air temperature during the experiment 

solar elevation angle in degrees 

mean and standard deviation for total length of experiment based on 2.5 min values 



Frey, et al. Atmospheric ROOH in West Antarctica 34 

Table 3. Overview of environmental parameters during the inter comparison period in December 

2000-2002; listed are averages and 1 (T uncertainties. 

Parameter 11/27 - 12/12/00 11/27 - 12/12/01 11/27 - 12/12/02 

HzOz, ppbv 4 12f202 674f180 4015151 

MHP, ppbv 3 14fl29 403f161 

latitude, "S 78.42 - 79.38 77.61 - 79.16 80.00 - 82.00 

Elevation, m 1675 - 1791 1353 - 1843 1537 - 1765 

air temperature, "C -14.2f4.1 - 19.0f3.8 - 14.6f2.4 

4.3 g kg-' 0.72k0.21 1.13kO. 14 

wind speed, m s-' 6.222.3 5.0f2.9 4.1k2.9 

co, PPbV 42.9f 1.5 48.7f1.3 50.7k1.9 

cH4, PPW 1709f2 170852 1713fI 

Surface 03, ppbv 14.5f3 .O 1 9.3k2.5 

O3 burden, DU 3 18f23 220f34 334f10 

W-Ba ,  W m-' 0.35f0.33 0.6050.5 5 0.30f0.26 

UV-B~, w m-2 0.40f0.36 0.42k0.39 0.37f0.31 

a calculated UV-B using observed ozone column densities 

calculated UV-B at constant ozone column densities (290 DU) 
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Figure 1. WAIS map (based on Antarctic Digital Data Base v4.1 http://www.add.scar.org/) 

overlying the RAMP DEM [Liu, et al., 20011 showing traverse routes of the US component of the 

International Transantarctic Scientific Expedition (US ITASE; details of the multi-disciplinary 

expedition at http://www.ume.maine.edu/USITASE/) in 2000-2002 and the 2 1 locations of 

atmospheric chemistry observations. 
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Figure 2. Schematic of 2-channel peroxide detector employed on ITASE; shown are air pumps 

(P), actuated injection valve (V), excitation source (Ex) and photo-multiplier tubes (PMT1 & 2). 
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Figure 3. Mixing ratios of H202 (black symbols) and CH300H (grey symbols) from 3 ITASE 

seasons observed during the month of December in 2000 (a.), 2001 (b.) and 2002 (c.). H202 is 

reported as 10 min averages, while the plotted M H P  data represent single chromatograms, each 

one of them representing a -5 min average of sampled air. Note that as the season progressed the 

measurement location changed as well, as indicated by the site index attached to each group of 

data. Data gaps are time periods when the ground traverse was in transition to a different site and 

no measurements were done. 
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Figure 4. Site averages of atmospheric mixing ratios of H202 (a) and MHP (b) and ratios of MHP 

to total peroxide (c) as a h c t i o n  of latitude. Symbols are means with error bars indicating one 

standard deviation and shaded areas the full range of measurements. 
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Figure 5. Estimates of Hz02 fluxes based on measured gradients between ambient and fim 

interstitial air are plotted as a function of latitude. Bars represent the mean and error bars 1 0 

uncertainty. Note that at site 01-5 and 02-4 two sets of measurements are shown. 
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Figure 6 .  Comparisons between observations and photochemical box model estimates of 

atmospheric H202, MHP and HCHO mixing ratios for Byrd (a-c) and South Pole (e-g). 

Calculated NO background values are plotted as well for both sites (d,h). Various model 

scenarios include: 1) a base case with standard reaction rates and no heterogeneous fluxes for 

ROOH and HCHO (grey lines) and 2) multiple runs with reaction rates optimized for MHP 

production, emission fluxes of H202 and HCHO included and the NO source set for different 

backgrounds in December (blue and red lines). Black symbols are observed mean concentrations 

at each site with error bars indicating the lo uncertainty range, while symbols in grey represent 

10 min averages of measured H202 and MHP. No DNPH results were available from South Pole, 

instead one 24 hr run from site 02-5 was used for comparison with no uncertainty range (8). 
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Figure 7. Correlation plots of observed and calculated environmental parameters on ITASE: a. air 

temperature vs. elevation with the black line illustrating the linear trend (slope -8.45 Wm, 2 = 

0.67), b. observed specific humidity q, (symbols and error bars correspond to median, 25" and 

75" percentile of each bin) vs. air temperature. Also shown is potential qv at R H = l O O %  (25" and 

75" percentile as grey lines), c. wind speed vs. latitude and d. surface ozone vs. latitude. Symbols 

and error bars in a., c. and d. represent mean and lo uncertainty at each site and individual field 

seasons are color coded: ITASE 2000 (blue), ITASE 2001 (black) and ITASE 2002 (red). All 

meteorological and surface ozone data used are 10 min averages from Decemberhnuary of the 

respective year (note that neither humidity nor surface ozone were measured in 2000). 
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Figure 8. Panels a-c show daily ozone column densities from TOMS during each field season 

above the location of the ITASE traverse on the same dates. Panels d-f show calculated surface 

UV-B (280-315 nm), where the black line represents daily means and the area shaded in grey 

illustrates the amplitude between solar noon and midnight; surface UV-B radiation was also 

calculated for ozone column densities fixed at a constant 290 DU (dotted black line). 
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Figure 9. Correlation plots of binned ROOH observations: (a./.e) H202/MHP vs. specific 

humidity qv, @/E) H202/MHP vs. calculated surface W - B  radiation (280-315 m), (c./g.) 

HzO2/MHP vs. surface ozone and (d./h.) H202/MHP vs. wind speed. Symbols and error bars 

represent median values and inner quartiles (25" and 75" percentiles). All data used are 10 min 

averages in December 2001, 2002 and early January 2003 (wind speed and W - B  correlation 

plots contain also December 2000 data). 
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Figure 10. Spatial distributions of total ozone above Antarctica are compared between December 

2000 (Panel a.), 2001 (Panel b.) and 2002 (Panel c.). Images show data recovered by the Earth 

Probe TOMS instrument (http://toms.gsfc.nasa.gov/ozone). White areas represent data gaps. 
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Figure 11. Atmospheric H202 and related parameters are shown fi-om 2000,2001 and 2002, each 

column representing one season of measurements. Areas shaded in grey highlight the comparison 

period November-27 - December-12 (Table 3). In row 1 daily column densities of ozone are 

plotted against time (grey symbols represent Byrd, while the black symbols take into account the 

current position of the ITASE traverse on the ice sheet). The second row shows 10 minute (grey 

symbols) and 24 hour averages (black symbols) of observed H202. Plotted are also simulated 

H202 mixing ratios in 2001 and 2002 fi-om the optimized fit to observations at Byrd in 2002 

(black line). The third row illustrates the variability of specific humidity (10 minute and 24 hr 

averages plotted as grey and black symbols, respectively; no data available fi-om 2000). 

Calculated daily averages of photolysis rates for 0 3  (black symbols) and HZOZ (grey symbols) are 

shown in the fourth row, and surface O3 measurements fi-om ITASE2001 and 2002 are plotted in 

the fifth row. 
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Figure 12. Sensitivities of calculated H202, CH300H and HCHO to increasing NO background 

levels are shown for a. Byrd (29.1 1.02-7.13.02) and b. South Pole (2.01.03-5.01.03). Symbols 

represent output of individual box model runs for H202 (circles), MHP (grey triangles) and 

HCHO (squares). Observation ranges, defined as the mean plus and minus lo ,  are shown as 

shaded areas with solid, broken and dotted border lines for H202, CH300H and HCHO 

respectively. Note that at South Pole only one data point for HCHO is available (see text). Panels 

c. and d. illustrate the relationship across the same model runs between calculated NO and OH 

radical concentrations at Byrd and South Pole. 



Popular Summary 

The troposphere above the West Antarctic Ice Sheet (WAIS) was sampled for 
hydroperoxides at 21 locations during 2-month-long summer traverses from 2000 to 2002, as part 
of US ITASE (International Transantarctic Scientific Expedition). First time quantitative 
measurements using an HPLC method showed that methylhydroperoxide (MHP) is the only 
important organic hydroperoxide occurring in the Antarctic troposphere, and that it is found at 
levels ten times those previously predicted by photochemical models. During three field seasons, 
means and standard deviations for hydrogen peroxide (-02) were 321k158 pptv, 65M176 pptv 
and 33W147 pptv. While MHP was detected, but not quantified in December 2000, levels in 
summer 2001 and 2002 were 317*128 pptv and 304*172.2 pptv. Results from firn air 
experiments and diurnal variability of the two species showed that atmospheric HzOz i s  
significantly impacted by a physical snow pack source between 76 and 90 O S ,  whereas MHP is 
not. We show strong evidence of a positive feedback between stratospheric ozone and H202 at the 
surface. Between November-27 and December- 12 in 200 1 , when ozone column densities dropped 
below 220 DU (means in 2000 and 2001 were 318 DU and 334 DU, respectively), H202was 1.7 
times that observed in the same period in 2000 and 2002, while MHP was only 80% of the levels 
encountered in 2002. Photochemical box model runs suggest that NO and OH levels on WAIS are 
closer to coastal values, while Antarctic Plateau levels are higher, confirming that region to be a 
highly oxidizing environment. The modeled sensitivity of H z 0 2  and particularly MHP to NO 
offers the potential to use atmospheric hydroperoxides to constrain the NO background and thus 
estimate the past oxidation capacity of the remote atmosphere. 


